A note on spaces in which every open set is $z$-embedded

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

An Open Set of Maps for Which Every Point Is Absolutely Nonshadowable

We consider a class of nonhyperbolic systems, for which there are two fixed points in an attractor having a dense trajectory; the unstable manifold of one has dimension one and the other’s is two dimensional. Under the condition that there exists a direction which is more expanding than other directions, we show that such attractors are nonshadowable. Using this theorem, we prove that there is ...

متن کامل

Models in which every nonmeager set is nonmeager in a nowhere dense Cantor set

We prove that it is relatively consistent with ZFC that in any perfect Polish space, for every nonmeager set A there exists a nowhere dense Cantor set C such that A∩C is nonmeager in C. We also examine variants of this result and establish a measure theoretic analog.

متن کامل

Every Graph is a Self - Similar Set

In this paper we prove that every graph (in particular S1) is a selfsimilar space and that [0, 1] is a self-similar set that is not the product of topological spaces, answering two questions posed by C. Ruiz and S. Sabogal in [6].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1982

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1982-0656120-9